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This Note presents a method to apply corrections for smearing and ra-
diative effects, and some effects of acceptance, in the process of extraction
of Born polarisation asymmetries from inclusive DIS data that has no pre-
cise absolute cross section normalization. This approach produces an un-
folded model-independent result for ABorn in one step without the need for
for model-dependent fitting with iteration. Unfolding implies the elimina-
tion of the correlations between the results in different kinematic bins caused
by the smearing and radiative effects, at the cost of introduced correlations
between the uncertainties in different kinematic bins. Particular attention is
paid to the propagation of experimental uncertainties.

The Appetizer

First we try to provide insight by considering a simplified example where
we neglect the complication of radiative DIS — by assuming there is only
(quasi)-elastic radiative background. This avoids the complexities of kine-
matic migration and the need for the unknown result as an input to the
simulations.

Let’s say that, for some arbitrary MC luminosity (the same in all cases)
and 100% beam and/or target polarization, we calculate with final kinematic
cuts the following simulated yields in one kinematic bin:
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disu: the unpolarized DIS signal (from the F2 model)
bgu: the unpolarized radiative background (from Bethe-Heitler)
bgp: the polarized radiative background yield difference (bg− − bg+)

(Bethe-Heitler has an intrinsic asymmetry)
and let’s call
disp: the unknown polarized DIS signal yield difference (dis− − dis+)

that could be simulated the same way if we knew g1

The values for bgp are calculated only as absolute cross sections. These must
be normalized to the data by means of the combination of disu and bgu. For
this purpose, let’s call k the (unknown) experimental efficiency×luminosity-
factor for each of both spin states, so if the numbers of counts recorded in
some bin are N+ and N−:1

(N− + N+) = k(disu + bgu) (1)

(N− − N+) = Pk(disp + bgp), (2)

where P is the (product of) experimental beam and/or target polarizations,
depending on whether a one-spin or two-spin asymmetry is measured. So we
have 2 unknowns — disp and k — and 2 equations.

Immediately we find that we can calculate k:

k =
N− + N+

disu + bgu
(3)

and then

disp =
N− − N+

kP
− bgp = (disu + bgu)

Ameas

P
− bgp (4)

where as usual

Ameas =
N− − N+

N− + N+
(5)

If we neglect effects of acceptance and smearing, ABorn = disp/disu, so we
just divide Eq. 4 by the known disu to get

ABorn =
disu + bgu

disu

Ameas

P
− bgp

disu
. (6)

1These yields from one measurement really represent only estimators. To be pedagog-
ically correct in these equations, we should replace these with the expectation or central
values of the distributions: 〈N±〉.
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With this formulation, it’s easy to write the absolute statistical uncer-
tainty in ABorn:

δ(ABorn) = δ(disp/disu) =
disu + bgu

disu

δ(Ameas)

P
(7)

where again as usual

δ(Ameas) =
2
√

(N+δ(N−))2 + (N−δ(N+))2

(N− + N+)2
(8)

So we see statistical uncertainty inflation by the ‘radiative dilution factor’

disu

disu + bgu
< 1

Note that it inflates regardless of whether the radiative background has the
same asymmetry as the DIS signal. Note also that in this simple case we
don’t have to iterate, as no input is defined in terms of the unknowns.

There is also a related but different inflation of the contributions to the
systematic uncertainty by the beam and/or target polarizations. Differenti-
ating Eq. 6, we find

|∂ABorn| =
disu + bgu

disu

Ameas

P

∂P

P
(9)

= (ABorn +
bgp

disu
)
∂P

P
. (10)

It is apparent that the fractional uncertainty contribution to ABorn is the same
as that on P itself only if the radiative background has a negligible polarized
cross section. Note that it is not the usual asymmetry of the background
that matters — the scale is set in the denominator by the unpolarized dis
cross section, which can be smaller than the unpolarized background at the
smallest x values. Further note that even if ABorn is zero, it can sustain a
substantial systematic uncertainty from the beam and/or target polarization.

The Main Course

Now, let’s consider the effect of additional deeply inelastic radiative compo-
nents. Here we have to account for kinematic migration of the DIS signal by
both radiative and instrumental smearing effects.
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It is assumed that there is available a Monte Carlo simulation of the
detector that also includes all internal radiative effects. For each simulated
event, we require both the Born and observed kinematic quantities. Using
this information, we accumulate for each of the + and − spin states the two-
dimensional nX×(nB +1) matrices n±(i, j) as the number of events generated
that fall in both bin j of the ‘true’ or Born kinematic variables selected by
the event generator to characterize the hard virtual photon, and bin i of
eXperimental kinematic variables, which reflect radiative and instrumental
effects. The indices identify only the kinematic bins, which can involve any
number of kinematic variables, including those of a produced hadron. Of
course, the Born binning can not be finer or involve more variables than the
experimental binning, and typically may have to be coarser.

The extra bin j = 0 is reserved here for generated background (called bg
in the previous section). The Born cross section in kinematic bins outside the
Hermes acceptance can feed bins inside the acceptance through radiative and
instrumental smearing effects. Since this contamination is independent of the
unknowns inside the acceptance2, it is included in the j = 0 row together
with the (quasi-)elastic Bethe-Heitler contaminations.

The question may arise of which event weights to use in the accumulation
of the matrices n±, since both true (Born) and observed kinematic variables
are involved.3 It is essential that the used weights include the factor for
radiative effects, as the smearing matrix definition obviously depends on the
validity of the observed distributions.

For convenience in the discussion, we isolate the known unpolarized and
unknown polarized distributions, defined as

nu ≡ n− + n+ (11)

np ≡ n− − n+ (12)

The original Born distributions nB
±(j) defined by the MC generator can be

extracted from another MC run with the same luminosity, with all radiative
and instrumental effects (including geometric acceptance) turned off. It is
important to note that

nB
±(j) &=

nX∑

i=1

n±(i, j), (13)

2If the model for g1 outside the acceptance needs adjustment to keep it continuous with
the result inside, then an iteration may still be needed.

3Thanks to Juergen Wendland for raising this issue.
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both because radiative effects do not conserve the total DIS cross section,
and because of the events that are undetectable due to either to radiative
kinematic migration outside the acceptance or to simulated detector accep-
tance and inefficiency. We will also require the projection of the n± matrices
on the axis representing the eXperimental kinematics, which can be found
by summing rows rather than columns:

nX
± (i) =

nB∑

j=0

n±(i, j) (14)

From the MC matrices n±, we can easily calculate the Smearing Matrices
S±(i, j), defined as

S±(i, j) ≡
∂σX

± (i)

∂σB
±(j)

=
∂nX

± (i)

∂nB
±(j)

. (15)

Since radiative effects do not conserve the total cross section, the S matrices
are not unitary, and their elements do not represent probabilities. If only
cross sections and not amplitudes are involved in the radiative calculation,
these first derivatives are constant — i.e. the higher derivatives are negligible.
Then we may calculate

S±(i, j) =
n±(i, j)

nB
±(j)

, i = 1 . . . nX , j = 0 . . . nB. (16)

The + and − matrices may be similar, but they may differ due to e.g. the
spin-dependence of radiative effects.

The unpolarized Born distributions Bu(j) = nB
u (j) ≡ nB

−(j) + nB
+(j) are

known from previous experiments and are incorporated in the Monte Carlo
production, but only an initial guess can be used for the unknown polar-
ized Born distribution nB

p (j), j = 1 . . . nB. However, a key property of the
smearing matrices is that they are insensitive to the model for the Born dis-
tributions used in the MC event generator. In the definition of S, both the
numerator and all terms in the denominator scale together with the relative
number of events generated in that Born j-bin, provided that there are no
neglected kinematic variables upon which they depend differently, and upon
which the acceptance imposes a bias. Hence S is independent of that num-
ber, and so it is reasonable to assume that S applies also to the real world,
to the degree that the MC simulation correctly represents radiative and in-
strumental effects. On the other hand, if we were tempted to try to extract
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an Un-smearing matrix directly from the Monte Carlo:

U(j, i) =
n(i, j)

nX(i)
, (17)

we would find it to be very sensitive to the event generator.
It is natural to wonder if a smearing matrix can be defined for unpolarized

initial states. Indeed it can in an analogous manner:

Su(i, j) =
nu(i, j)

nB
u (j)

=
n−(i, j) + n+(i, j)

nB
−(j) + nB

+(j)
, (18)

but this concept is not useful for spin-dependent analyses, as it is in general
sensitive to the event generator. This is because the relative magnitude of the
two terms in the numerator can differ from their relative magnitude in the
denominator, so that the above scaling argument does not work separately
for the two helicity states. Such a defect is shared by a smearing matrix for
any initial state that can be represented as a linear combination of two other
distinct initial states.

From Eqs. 14 and 16, we have

nX
± (i) =

nB∑

j=0

S±(i, j) nB
±(j). (19)

If the MC simulation really describes reality, then the observed eXperimental
yields X±(i) can be similarly expressed in terms of the actual Born distribu-
tions B±(j):

X−(i) = k(i)
nB∑

j=0

S−(i, j) B−(j), i = 1 . . . nX (20)

X+(i) = k(i)
nB∑

j=0

S+(i, j) B+(j), i = 1 . . . nX , (21)

or, in matrix form,

X− = [k]S−B− (22)

X+ = [k]S+B+, (23)

where k is a vector of arbitrary normalisation constants that incorporate
integrated luminosities of experiment and Monte Carlo, unsimulated detector
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inefficiencies that have no additional j-dependence, etc. For convenience in
matrix notation, it can be expressed in the form of an nX × nX diagonal
matrix [k]. We normalize the MC to the experimental results so that Bu(j) =
nB

u (j), while Bp(j), j = 1 . . . nB are the sought unknowns. We can find
these together with the unknown vector k by solving the 2 vector equations,
Eqs. 22 and 23, each consisting of nX scaler equations. If this system can be
solved for Bp, it provides access to the Born polarization asymmetry ABorn

without iteration. This result would incorporate corrections for acceptance
and instrumental smearing, and should also have the advantage of avoiding
the smoothing effect of the fitting model for g1 in the MC generator.4

As in the first section of this Note, the first step toward a solution is to use
Eq. 22 to calculate k from the known unpolarized Born distribution Bu(j).
In the range j = 1 . . . nB of interest, this is calculable from world data on
F2, while B±(0) (actually S±(i, 0) B±(0)) must be derived from a radiative
calculation, all with the same (but arbitrary) normalization. In practice,
all of these known quantities are typically embodied in the same MC event
generator used to define the smearing matrices; generically, S(i, j) B(j) =
n(i, j). Thus, adding Eqs. 20 and 21:

k(i) =
Xu(i)∑nB

j=0[S−(i, j) B−(j) + S+(i, j) B+(j)]
(24)

or [k](i, i) =
Xu(i)

[S−B−](i) + [S+B+](i)
(25)

(typically) k(i) =
Xu(i)

nX
u (i)

. (26)

If all detector inefficiencies that are not accounted for in the MC simula-
tion were known to be sufficiently uniform over the kinematic range of the
data (a necessary condition for which is that the k(i)’s are consistent within
statistics), we could average all the k’s, and reduce the uncertainty. This
assumption may be checked more precisely by using a separate unpolarized
data set with high statistics.

We now take the difference of Eqs. 20 and 21, and substitute our solution
for k. As already mentioned, the B±(0) values representing Born processes

4This smoothing effect arises in the iterative method of solving for the Born observables.
This effect might help explain why our previously underestimated error bars didn’t result
in data that appeared excessively scattered.
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outside the acceptance are assumed to be available from e.g. radiative cal-
culations (typically in the form S±(i, 0) B±(0) = n±(i, 0)), with the same
normalization as the unpolarized distribution (Bu(j), j = 1 . . . nB). Hence
such a known term is moved to the other side of the equation:

∑nB
j=1[S−(i, j)B−(j) − S+(i, j)B+(j)]

= Xp(i)
k(i) − S−(i, 0)B−(0) + S+(i, 0)B+(0), i = 1 . . . nX (27)

= AX(i)
∑nB

k=0[S−(i, k)B−(k) + S+(i, k)B+(k)]

−S−(i, 0)B−(0) + S+(i, 0)B+(0) (28)

= AX(i)Xu(i) − S−(i, 0)B−(0) + S+(i, 0)B+(0) (29)

(typically) = AX(i) nX
u (i) − np(i, 0), i = 1 . . . nX , (30)

where

B−(j) + B+(j) ≡ Bu(j) = nB
u (j), j = 1 . . . nB, (31)

and AX(i) =
Xp(i)

Xu(i)
. (32)

We now have nX+nB equations in the 2nB unknowns B−(j) and B+(j), j =
1 . . . nB. We may eliminate B+ from the system to reduce the dimensionality:

nB∑

j=1

[S−(i, j) + S+(i, j)]B−(j) =

AX(i) nX
u (i) − np(i, 0) +

nB∑

j=1

S+(i, j)nB
u (j), i = 1 . . . nX . (33)

If we choose to have the same number of i-bins as j-bins, the number
nX of data values is equal to nB, and Eq. 33 forms a barely-constrained
system. The square sub-matrix S ′ = S− + S+ that remains after removing
the j = 0 columns from S± may have an inverse if the problem is suffi-
ciently well-conditioned. However, experience in applying matrix inversion
has led to some disappointment, sometimes casting doubt upon this whole
approach. A more probable reason for ill-conditioned square matrices is that
the experimental data set is simply not adequate to uniquely constrain the
Born distributions in such detail. The only alternatives are then to reduce
the number of j-bins, or to introduce additional constraints on the results,
such as smoothness conditions.
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We now develop the solution for the case where S ′ is a well-conditioned
square matrix. Multiplying Eq. 33 by the inverse of S ′, we get

B−(j) =
nX∑

i=1

[S ′]−1(j, i) ×
[

AX(i) nX
u (i) − np(i, 0) +

nB∑

k=1

S+(i, k)nB
u (k)

]

, j = 1 . . . nB. (34)

We substitute this solution in

ABorn(j) =
2B−(j) − Bu(j)

Bu(j)
(35)

Again, if the Monte Carlo generator embodies the unpolarized Born cross
sections as well as all contaminating processes outside the acceptance,

ABorn(j) = −1 +
2

nB
u (j)

nX∑

i=1

[S ′]−1(j, i) ×
[

AX(i) nX
u (i) − np(i, 0) +

nB∑

k=1

S+(i, k)nB
u (k)

]

, j = 1 . . . nB. (36)

As in the simplified case, it’s possible to write the absolute statistical uncer-
tainty in ABorn in term of a ‘radiative dilution matrix’:

D(j, i) =
2[S ′]−1(j, i) nX

u (i)

nB
u (j)

(37)

δ2(ABorn(j)) =
nX∑

i=1

D2(j, i) δ2(AX(i)), (38)

where δ(AX(i)) is calculated as per Eq. 8. We now see uncertainty modifica-
tion by the matrix D.

Again as in the simplified case, the systematic uncertainty contribution
by the beam and/or target polarization (product) P may be inflated by the
radiative dilution. To see this, we differentiate Eq. 36 to get

|∂ABorn(j)| =
2

nB
u (j)

nX∑

i=1

[S ′]−1(j, i)AX(i)nX
u (i)

∂P

P 2

=

[

ABorn(j) + 1 +
2

nB
u (j)

nX∑

i=1

[S ′]−1(j, i)
(
np(i, 0) −

nB∑

k=1

S+(i, k)nB
u (k)

)]
∂P

P
.(39)
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It was mentioned that statistical precision can be improved if it is assumed
that Eq. 26 is independent of i. In this case, all of the subsequent equations
still apply if we replace AX(i) with ĀX(i) and nX

u (i) with n̄X
u , where

ĀX(i) =
Xp(i)∑nX

k=1 Xu(k)
(40)

and n̄X
u =

nX∑

k=1

nX
u (k). (41)

In the general case, matrix inversion may not be applicable. The system
may have to be over-constrained (nX > nB). Then another method must be
employed to solve Eq. 28. Typically, one searches the solution spaces for the
minimum values of

χ2 = (Xp − [k]SpBp)
T (CovX)−1

p (Xp − [k]SpBp) . (42)

The tool for linear recursion should provide both the solutions and their error
matrices. These must then be carried through the calculation of ABorn and
its uncertainties.

One may be tempted to assume that an estimate of the uncertainty contri-
bution due to MC statistics may be simply obtained by individually varying
each of the n matrix elements by one standard deviation and summing in
quadrature all of the effects on the result. This approach would be based
on the assumption of linear superposition. However, this drastically under-
estimates the actual uncertainty contribution, which is dominated by the
nonlinearity inherent in matrix inversion. It is necessary to vary randomly
all of the n(i, j) matrix elements according to their individual expected distri-
butions, in each of many trials, to accumulate a distribution in the resulting
ABorn. This avoids the cost of many redundant MC runs.

First moments of a Born distribution should be calculated by choosing
one large Born bin (nB = 1), to avoid the problem of statistical correlations
between smaller bins that must be summed.

An Alternative to a Radiative Monte Carlo Simulation

If a Monte Carlo simulation of the experiment that contains internal radia-
tive effects is not available, it may still be possible to derive the radiative
smearing matrices directly from one of the commonly-available codes for cal-
culating local radiative correction factors. By operating this code in a rather
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unconventional manner, we may extract the contributions to the observable
cross section arising from each element of the Born cross section. The Born
cross sections for each spin configuration are perturbed separately, and then
the resulting effects on the unpolarized and polarized cross sections are cal-
culated.

A radiative code such as we might employ here takes as input models
for the Born cross section, (quasi-)elastic form factors and the quasi-elastic
suppression factor. The output is the ratio of radiated to Born cross sections
in each bin of experimental kinematics. By observing in all experimental
bins the effect on the radiated cross section produced by perturbing the
Born cross section in each Born kinematic bin in turn, the correlation matrix
S can be computed using the definition Eq. 15. This procedure requires
that the binning in Born and experimental kinematics be commensurate —
i.e. the Born bin width should be an integral multiple of the experimental
bin width. The S matrix must first be computed using the possibly finer
experimental binning for the Born bins also, and then a weighted average is
computed for each wider final Born bin. It may be necessary to provide the
cross section perturbation in each bin as a smoothly varying peaked function,
without discontinuities that might corrupt the numerical integrations in the
code. In this approach, the B vectors become the actual Born cross sections.
The required ‘background’ contributions S±(i, 0) σB

±(0) can be derived as
(minus) the effects of setting to zero all Born cross sections outside the region
of interest as well as the (quasi-)elastic form factors and the quasi-elastic
suppression factor.
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